

IMEMTS 2010

October 11-14, 2010

C. Coulouarn, R. Boulanger, D. Bouchaud

NEXTER Munitions

Etablissement de Bourges 7, route de Guerry 18023 Bourges cedex c.coulouarn@nexter-group.fr

This document is the property of NEXTER

The information it contains cannot be used, reproduced or communicated without their prior written agreement

Contents

- Context of the study and objectives
- > Low vulnerability and energetic material formulations

This document is the property of NEXTER

- Hazard characterizations
- **Detonic performances**
- **Industrial transfers**
- **IM** tests

- **Dynamic and static firings**
- **Summary and conclusions**

Context of the study (1)

- **Objectives of this study**
 - To develop an explosive composition
 - Pressable at room temperature
 - **Best cost-effectiveness**

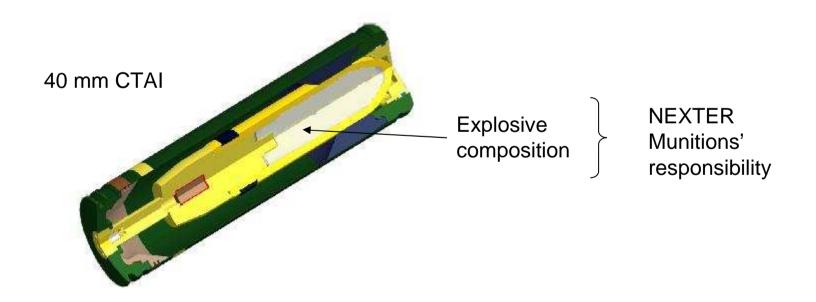
- To meet required performances
 - Explosive composition compatible with wide range of munitions:
 - Medium calibre, warhead, booster,...
 - Compliant with the STANAG 4439 with respect to the munitions

This document is the property of NEXTER

Context of the study (2)

- **Applications**
 - **DGA** project: Anti Aircraft Warhead

Booster applications



- **Medium calibre applications**
 - 25 x137 HEI Airburst
 - 30 x113 Supersafe
 - 40 CTA: GPR-PD and GPR-AB

Case study: CTAI cased telescoped ammunition

- 40 mm ammunition developed by CTAI
 - CTAI JV is dedicated to developing and promoting the 40 mm Cased **Telescoped Armament System.**
 - Development of the GPR round: NEXTER munitions in charge of explosive filling

This document is the property of NEXTER

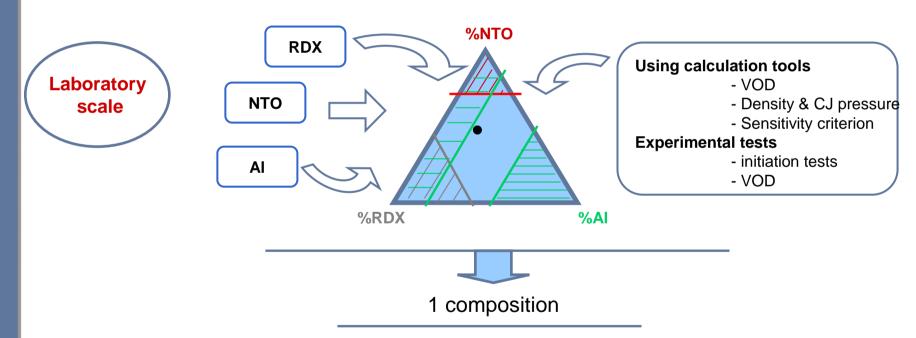
Low vulnerability explosive composition approach

Objectives: explosive composition intended for medium calibre ammunition

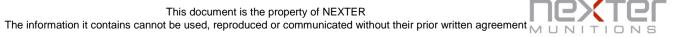
State of the art existing explosive compositions

No explosive composition with:

- ✓ High production capability
- ✓ Uniaxial compression at room temperature
- ✓ Cost objectives
- ✓ IM requirements


new vulnerability composition development

Targeted performances


		Detoni	Mechanical properties			
Targeted performances	Density ρ	VoD	Unconfined Critical diameter	Gap Test LSGT	Stress max	Young's Modulus
	> 1.8 g.cm ⁻³	> 7800 m.s ⁻¹	< 10 mm	Between 200 and 275 cards	< 10 MPa	< 2000 MPa

Energetic material formulation

- NTO/RDX based compositions
 - Developed and optimized with the help of experimental designs
 - Compromise between NTO/RDX/Aluminium: optimal conditions

Safety characterization, detonic performances evaluation

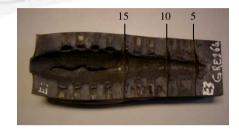
Energetic material characterization

Hazards characterization: basic safety tests

		50% Go results	AFNOR standard
	Friction sensitivity	0% at 353 N	NF T 70 503
	Electrostatic discharges	367 mJ	NF T 70 539
-	Impact sensitivity	30% at 50 J	NFT 70 500

Mechanical properties evaluation

	Mechanical properties			
XP3264 [®] at 20℃	Stress max	Young's Modulus		
AF3204 at 20 C	9,8 MPa	607 MPa		



Energetic material characterization

> Detonation velocity and unconfined critical diameter

 $> 7900 \text{ m.s}^{-1}$

Less than 5 mm

XP3264®

Gap Test ISGT

iSGT result: 230 cards

Pressure in acetate: 22,8 kbar

Detonator

Donor: HCG 95/5/0,5 CH

Cellulose acetate cards gap

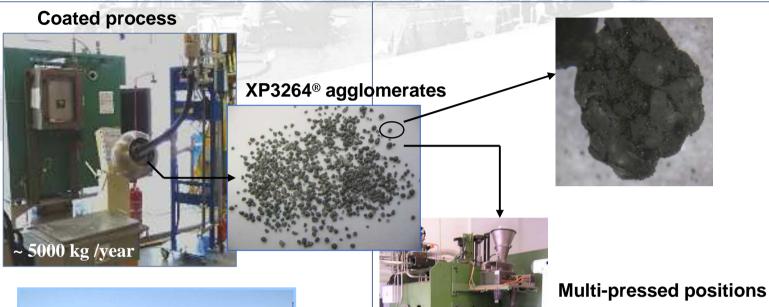
Steel tube

Acceptor: XP3264® Ø 73 mm H: 280 mm

Witness plate

STANAG 4488

Energetic material characterization


Summary of properties for XP3264® explosive

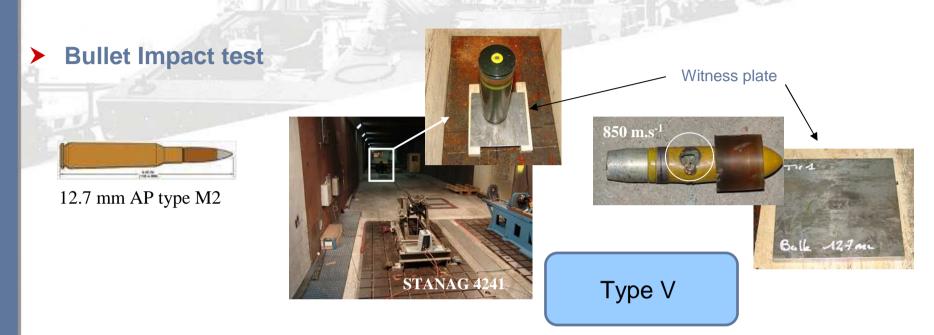
	Detonics Properties				Mechanical properties		
	Density ρ	VoD	Detonation pressure	Unconfined Critical diameter	Gap Test iSGT	Stress max	Young's Modulus
Targeted performances	> 1.8 g.cm ⁻³	> 7800 m.s ⁻¹		< 10 mm	Between 200 and 275 cards	< 10 MPa	< 2000 MPa
Recorded perfomances XP3264 [®]	1.82 g.cm ⁻³	7921 m.s ⁻¹	285 kBar	< 5 mm	230 cards	9,8 MPa	607 MPa

French MoD (DGA) certification

XP3264® homologation according to STANAG 4170 will be delivered at the end of 2010.

Transfer and qualification to industrial process

Industrial scale

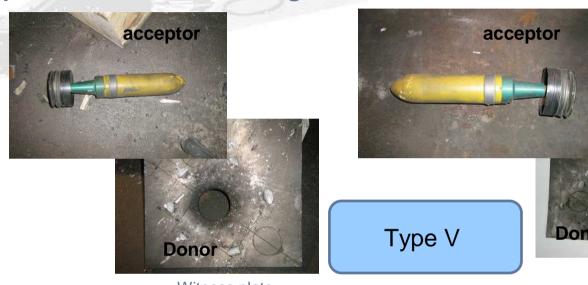

Dedicated workshop

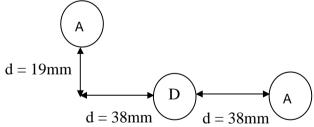
Explosive composition XP3264®

40 mm CTAI ammunition

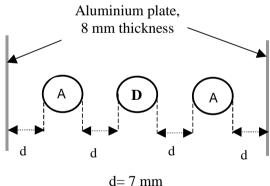
IM tests (STANAG 4439) – Results (cartridge)

Shaped Charge Jet Impact: CCEB 62




Type III

IM tests (STANAG 4439) – Results (cartridge)


> Sympathetic reaction: 2 configurations tested

Witness plate

40 mm configuration without any packaging

② Feed slot ammunition configuration

Witness plate

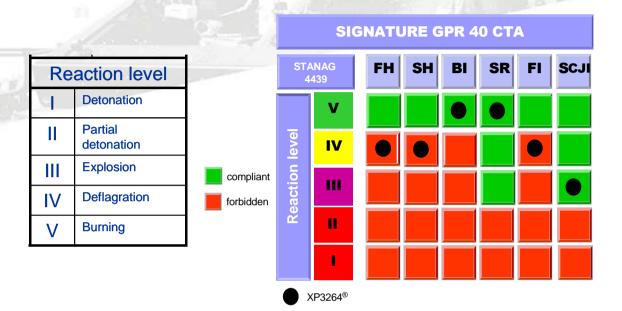
IM tests (STANAG 4439) – Results (cartridge)

Slow Cook Off: 2 configurations (slope 3.3℃/h)

Type IV

Cartridge opening

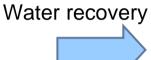
Fast Cook Off



Type V

Cartridge opening

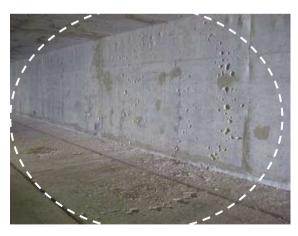
40 MM GPR IM signature


Threat			
FH	Fast Heating		
SH	Slow Heating		
BI	Bullet Impact		
SR	Sympathetic Reaction		
F	Fragment Impact		
SCJI	Shaped Charge Jet Impact		

- Increase the safety level during storage, transport and handling phases
- Increase the safety level for the vehicle's crew during combat phase

40 MM: static and dynamic firings

> Static firing: fragmentation test



Fragment distribution

Example of dynamic firing

Fragment impacts in the wall

X-Ray visualisation

Conclusion

- **R&T** activities
 - Researching explosive formulations
 - **Explosive composition compliant with customer's requirements**
- XP3264® characterization
 - Low sensitivity (safety tests), detonation properties compliant with requirements
 - XP homologation (STANAG 4170) in progress
- Industrial transfer:
 - Laboratory to industrial scale production qualified
 - Process robustness assessed in parallel
 - A dedicated workshop built for mass production
- **Terminal efficiency**
 - Good fragmentation level observed with 40 mm recovery tests
 - **Confirmation with dynamic firing tests**
- **IM signature (STANAG 4439)**
 - Significant increase of safety level,
 - Full IM signature coming with qualification programme

40 mm CTA GPR are now filled with XP3264®

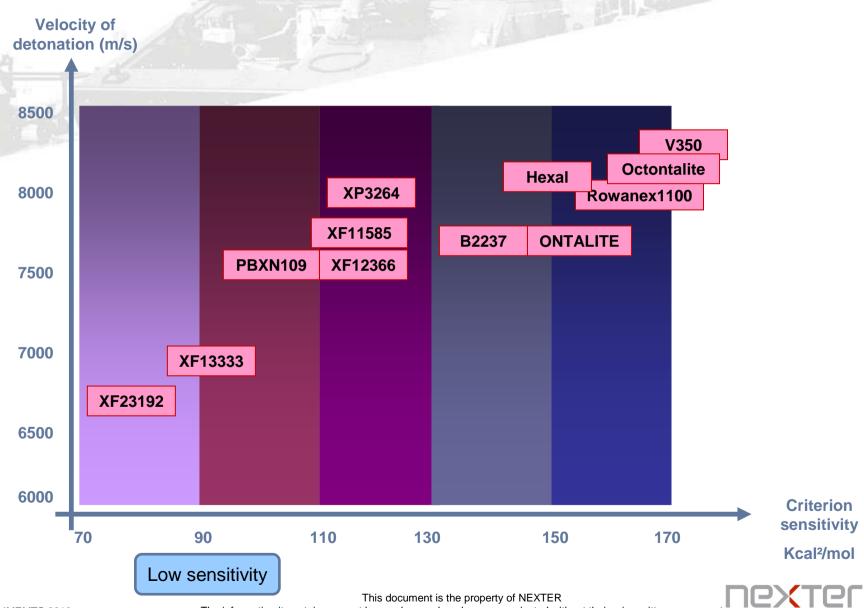
Acknowledgements

Many thanks to the DGA who are supporting the homologation

Thank you for your attention

QUESTIONS?

IMEMTS 2010


October 11-14, 2010

C. Coulouarn, R. Boulanger, D. Bouchaud

	XP 3264	Hexal	STANAG
Friction sensitivity	41,7 J	21,7 J	4489
Impact sensitivity	0% at 353 N	263,1 N	4487
Electrostatic discharge	367 mJ	242 mJ	4490
Intermediate Scale Gap Test	230 Cards ~23,8 kPa	275 Cards ~15 kPa	4488
Unconfied critical Diameter	< 5 mm	2 < < 3 mm	AOP7
Velocity of detonation	> 7900 m/s at p=1,82 g/cm ³	8230 m/s at ρ=1,81 g/cm ³	AOP 7

Annex

